
The Multi-faceted Use of the OAI-PMH in the LANL

Repository

Henry N. Jerez
hjerez@lanl.gov

Xiaoming Liu
liu_x@lanl.gov

Patrick Hochstenbach
hochsten@lanl.gov

Herbert Van de Sompel
herbertv@lanl.gov

Digital Library Research & Prototyping Team
Los Alamos National Laboratory, Research Library

Los Alamos, New Mexico, USA

ABSTRACT
This paper focuses on the multifaceted use of the OAI-PMH in a

repository architecture designed to store digital assets at the

Research Library of the Los Alamos National Laboratory

(LANL), and to make the stored assets available in a uniform way

to various downstream applications. In the architecture, the

MPEG-21 Digital Item Declaration Language is used as the

XML-based format to represent complex digital objects. Upon

ingestion, these objects are stored in a multitude of autonomous

OAI-PMH repositories. An OAI-PMH compliant Repository

Index keeps track of the creation and location of all those

repositories, whereas an Identifier Resolver keeps track of the

location of individual objects. An OAI-PMH Federator is

introduced as a single-point-of-access to downstream harvesters.

It hides the complexity of the environment to those harvesters,

and allows them to obtain transformations of stored objects.

While the proposed architecture is described in the context of the

LANL library, the paper will also touch on its more general

applicability.

Categories and Subject Descriptors
H.3.7 [Digital Libraries]: Standards; System issues

General Terms
Design, Standardization.

Keywords
Digital Libraries, OAI-PMH, interoperability, federation.

1. INTRODUCTION
When compared to most academic and research libraries, the

Research Library of the Los Alamos National Laboratory (LANL)

follows a rather unique strategy with respect to providing access

to electronic scholarly information. The general trend in

electronic library services is to have users access externally hosted

materials through third party services, federated through a locally

hosted Web Portal. In order to be self-supporting with respect to

mission-critical scholarly information, the LANL library acquires

or licenses a vast collection of digital scholarly assets, hosts those

assets locally, and makes them accessible through locally

developed user services. The locally hosted assets include

secondary data feeds from ISI, BIOSIS, Inspec, and primary

information feeds from major scholarly publishers such as

Elsevier, Wiley, IOP, APS, etc.

 At the time of writing the collection of locally hosted assets

amounts to approximately 5 Terabytes of raw materials. In

addition to that, the LANL library is actively investigating the

deployment of Institutional Repository capabilities to host locally

created materials such as technical reports, datasets, videotaped

presentations, etc. Also, research is underway to augment the

locally hosted collection with materials gathered by focused Web

crawling, and to include logs detailing the usage of repository

assets in the repository as assets in their own right [1,2]. Hosting,

archiving and making accessible such a vast and heterogeneous

collection of scholarly assets in a consistent and sustainable

manner is a challenge that touches on many areas of Digital

Library practice and research, including the identification of

assets, the expression of relationships between assets, the

representation of assets by means of complex object models, and

methods to ingest and access stored assets.

Over the last year, the Digital Library Research and Prototyping

Team of the LANL Research Library has worked on the design of

a LANL Repository architecture aimed at ingesting, storing, and

making accessible to downstream applications its ever growing

heterogeneous digital collection. Also, a working prototype of the

design has been implemented. While no claims are being made

that the LANL Repository design or implementation are of a

nature that merits a comparison with – say – the deliverables of

the DSpace [3] or Fedora [4] projects, the authors do feel that the

architecture has the following interesting properties that should be

attractive for repository-related projects beyond the realm of the

LANL Research Library:

a. The use of the MPEG-21 Digital Item Declaration Language

(DIDL) to represent complex objects, as described in [5].

b. The natively distributed nature of the architecture.

c. The use of a special technique – the XMLtape – to store and

make accessible static collections of complex objects.

d. The multi-faceted use of the OAI-PMH to access stored

content in incremental batches.

e. The use of NISO OpenURL to access stored content or

various disseminations thereof, as described in [6].

f. The dynamic binding of dissemination methods to stored

content, as described in [6].

Copyright 2004 Association for Computing Machinery. ACM acknow-

ledges that this contribution was authored or co-authored by a contractor

or affiliate of the U.S. Government. As such, the Government retains a

nonexclusive, royalty-free right to publish or reproduce this article, or to

allow others to do so, for Government purposes only.

JCDL’04, June 7–11, 2004, Tucson, Arizona, USA.

Copyright 2004 ACM 1-58113-832-6/04/0006…$5.00.

11
Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries (JCDL’04)
1-58113-832-6/04 $ 20.00 © 2004 ACM

Authorized licensed use limited to: Los Alamos National Laboratory Research Library. Downloaded on February 20, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

This paper elaborates on properties (b), (c), (d) of the LANL

Repository architecture by describing its multi-faceted use of the

OAI-PMH [7]. Generally speaking, the OAI-PMH is used in the

architecture to enable downstream applications – such as indexing

engines of various types – to recurrently poll the LANL

Repository for added assets that are of interest to them, to harvest

them, and – in good OAI-PMH Service Provider tradition – to do

something meaningful with them. In order to achieve this, the

OAI-PMH is used at different levels in the architecture. This will

be shown in the remainder of this paper by describing the major

components used in the architecture, as well as their interactions.

A good insight in the OAI-PMH is required for an adequate

understanding of this paper. To improve clarity, terms from the

OAI-PMH are showed in another font.

Figure 1 introduces those major components. As can be seen, the

LANL Repository hosts a multitude of autonomous OAI-PMH

repositories, each of which stores complex digital objects

represented using an XML wrapper format. This aspect of the

LANL Repository will be discussed in Sections 2 and 3. The

Repository Index, detailed in Section 4, keeps track of the

creation of such autonomous OAI-PMH repositories as well as of

their location. The Repository Index itself is exposed as an OAI-

PMH repository in its own right. For each complex digital object

stored in the environment, the Identifier Resolver stores the

identifier of that object as well as the location of the OAI-PMH

repository in which it resides. The Identifier Resolver, described

in Section 5, is populated through OAI-PMH harvesting and can

be queried in a variety of ways, including the handle protocol.

The DIP engine, which works according to MPEG-21 principles,

is introduced to facilitate the delivery of various disseminations of

stored objects. The DIP engine is only briefly described in

Section 6; details are available in [5, 6]. Finally, the OAI-PMH

Federator, detailed in Section 6, exposes the whole LANL

Repository as a single OAI-PMH repository. It interacts with all

other components mainly using the OAI-PMH. The OAI-PMH

Federator hides the complexity of the environment to downstream

harvesters, and becomes their single point of access to harvest

from the LANL Repository. The OpenURL Gateway is described

in detail in [6]; it provides a front-end to the repository from

which various disseminations of individual objects contained in

the LANL Repository can be obtained using requests compliant

with the forthcoming NISO OpenURL standard [8].

DIDs

OAI-PMH request

OAI-PMH request

OAI-PMH request

DID

DIP Table

MPEG-21

DIP

Engine

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

LANL

A&I Publisher

publisher

Repository

Index

TechReport

A&I

A&I

b
a
s
e
U

R
L

(3
)

b
a
s
e
U

R
L

(2
)

b
a
s
e
U

R
L

(1
)

b
a
s
e
U

R
L

(1
)

b
a
s
e
U

R
L

(2
)

b
a
s
e
U

R
L

(3
)

b
a
s
e
U

R
L

(x
)

Identifier

Resolver

DID

DID

DID

DID

DID

DID

FTXT

b
a
s
e
U

R
L

(x
)

In
g

e
s
t

DID-id

baseURL(n) & DID-id A&I Publisher

O
p
e
n
U
R
L

G
a
te

w
a
y

O
A

I-P
M

H
 F

e
d

e
ra

to
r

OpenURL

OAI-PMH request

INDEX

Autonomous OAI-PMH repositories

transformed

content

OAI-PMH request

DID, METS,

SCORM, ...

Figure 1. LANL Repository Architecture

12
Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries (JCDL’04)
1-58113-832-6/04 $ 20.00 © 2004 ACM

Authorized licensed use limited to: Los Alamos National Laboratory Research Library. Downloaded on February 20, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

2. INGESTION INTO THE LANL

REPOSITORY
In many cases the delivered assets to be hosted in the LANL

Repository are ‘complex’ in the sense that they consist of multiple

individual datastreams that form a single logical unit. For

example, a scholarly article may be delivered as a bundle that

consists of metadata describing the article, the article itself in PDF

and ASCI format, and the references made in the article expressed

in XML. The complex nature of the assets led to an investigation

regarding existing approaches to represent complex digital objects

using XML wrappers, which resulted in the selection of the

MPEG-21 Digital Item Declaration Language (DIDL) [9] as the

sole way to store digital assets in the LANL Repository. The

actual use of DIDL in the LANL Repository, including the

dynamic manner in which dissemination methods are attached to

assets upon retrieval, is described in detail in [5,6].

Digital assets to be hosted by the LANL Repository can, in

principle, be obtained in a variety of ways including ftp, OAI-

PMH harvesting, Web crawling and delivery on physical media.

A prototype ingestion process has been developed that turns each

obtained asset into an autonomous XML document that wraps the

datastream(s) of which the asset consists. Such an XML

document is named a Digital Item Declaration (DID); all LANL

DIDs are compliant with the MPEG-21 DIDL specification. As

such, for example, the different datastreams of the previously

mentioned scholarly article will be contained in a single DID,

which will physically contain and/or reference the various

datastreams that make up the asset. The DID also contains

information added by the ingestion process, for example, aimed at

expressing relationships between contained datastreams, the

media type of datastreams, etc. [5].

For the purpose of this paper two data elements added to DIDs

during the ingestion process are of crucial importance:

• The DID-identifier: a globally unique identifier – a URI - for

the DID itself. The DID-identifier should not be confused

with the identifier of content contained in or referenced by a

DID. Those identifiers are named Content-identifiers.

• The DID-creationTime: the time of creation of the DID,

expressed as an ISO 8601 datetime [10] with seconds

granularity.

3. STORING DIDS IN MULTIPLE OAI-

PMH REPOSITORIES
Once a delivered asset has been turned into a DID by the

ingestion process, the DID is stored in an OAI-PMH repository.

Data assets at LANL are typically received in large batches, since

secondary or primary publishers that account for the bulk of the

data to be stored in the LANL Repository deliver weekly or

annual feeds. In those cases, an autonomous OAI-PMH

repository is created per delivered batch. As a result, many OAI-

PMH repositories exist in the LANL Repository, each of which

has the following characteristics:

• It has a unique, persistent baseURL, the http address
BaseURL(n)

• Contained records are DIDs only

• The identifier used by the OAI-PMH is the DID-

identifier

• The datestamp used by the OAI-PMH is the DID-

creationTime.

• The only supported metadata format is DIDL, with

metadataPrefix DIDL, defined by the MPEG-21 DIDL

XML Schema. Because mapping a DID that represents a

complex digital object to simple DC is quite an impossible

task, support of DC by these OAI-PMH repositories is rather

meaningless.

• The supported OAI-PMH harvesting granularity is at the

seconds-level

• Set structures may be supported, but to reduce complexity

this aspect will not be discussed in this paper.

As a result, each autonomous OAI-PMH repository can be

harvested using a datestamp-based strategy, as a means to

recurrently collect newly added DIDs from them.

Not only are new data assets at LANL typically received in

batches, they are also quite stable in the sense that delivery of an

update for an asset is rather rare. These ingestion properties have

led to the creation of a special-purpose OAI-PMH repository,

named the XMLtape. An XMLtape OAI-PMH repository is

created as follows:

• As described earlier, when a batch of assets is delivered, each

asset is turned into a DID.

• All those DIDs are concatenated into a single well-formed

and valid XML file; this XML file can easily contain

millions of DIDs.

• The XML file is then indexed using an approach inspired by

a technique described by Google creators Page and Brin

[11]: (1) the XML file is gzipped; (2) the gzipped file is

indexed to support the core OAI-PMH keys, identifier
and datestamp, which are respectively the DID-identifier

and the DID-creationTime. The indexes record the values of

these keys, and the byte-offset and byte-count in the gzipped

file of the DIDs with a corresponding value.

• Software has been developed that makes the gzipped file and

its corresponding index accessible through the OAI-PMH.

XMLtapes turn out to be a handy way to store large batches of

stable assets. As the technique is based on the common, multi-

platform gzip tool it provides guarantees for administration-less

continuity. The nature of the indexes guarantees fast access to

stored DIDs, and the simplicity of the components involved yields

a high uptime of the XMLtape OAI-PMH repositories. Because

of their XML format, XMLtapes can be validated using standard

XML tools, and provide a high compression ratio. DIDs in

XMLtapes are never updated. Rather, when an update for a

contained asset is delivered, a new DID is created and stored in

another OAI-PMH repository.

4. KEEPING TRACK OF AUTONOMOUS

OAI-PMH REPOSITORIES: THE

REPOSITORY INDEX
As has been shown, storing DIDs in a multitude of individual

OAI-PMH repositories is attractive due to the nature of the

ingestion properties at the LANL library. And, while updates can

be harvested from each autonomous OAI-PMH repository, the

question remains unanswered as to how harvesters operated by

13
Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries (JCDL’04)
1-58113-832-6/04 $ 20.00 © 2004 ACM

Authorized licensed use limited to: Los Alamos National Laboratory Research Library. Downloaded on February 20, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

downstream Service Providers - such as indexing engines - learn

about the existence, addition of, and location of all those

repositories. In order to provide this crucial intelligence, the

Repository Index is introduced.

The Repository Index contains an entry for each autonomous

OAI-PMH repository in the environment. Each entry contains the

following information per OAI-PMH repository:

• The repository-baseURL: the baseURL of an OAI-PMH

repository, which is a unique and persistent URI.

• The repository-creationTime: the time when the OAI-

PMH repository becomes harvestable, by becoming

visible through the Repository Index. This time is

expressed as an ISO 8601 datetime with seconds

granularity.

• Metadata pertaining to the creation of the OAI-PMH

repository, its contents, etc.

It cannot be overlooked that the first two information elements of

the Repository Index map directly to the notions of the

identifier and the datestamp of the OAI-PMH, respectively.

And, indeed, in the LANL Repository, the Repository Index is

exposed as an OAI-PMH repository in its own right, with the

following properties:

• It has a unique, persistent baseURL, the http address

BaseURL(Repo-Index).

• Contained records comply with a locally defined metadata

format, identified by metadataPrefix INDEX, which

facilitates the expression of the necessary metadata about

autonomous OAI-PMH repositories.

• The identifier used by the OAI-PMH is the repository-

baseURL, BaseURL(n).

• The datestamp used by the OAI-PMH is the repository-

creationTime. There are no updates to metadata contained in

the Repository Index, and hence this datestamp will never

change and always remain equal to the time the OAI-PMH

repository became available for harvesting.

• The supported OAI-PMH harvesting granularity is

seconds-level.

• Set structures may be supported, but to reduce complexity,

this aspect will not be discussed in this paper. Typically,

set structures would be used in the Repository Index to

broadly categorize the nature or content of autonomous OAI-

PMH repositories.

As a result of the introduction of the Repository Index, harvesters

operated by downstream applications – all of which are internal to

LANL – can use a datestamp-based harvesting strategy to gather

newly added DIDs from the LANL Repository. Also the harvester

contained in the OAI-PMH Federator, which is a special type of

downstream application described later, will interact with the

environment in the manner described here.

Presume that T1 and T2 are second-granularity datetimes, with

T2 > T1, and that a harvester wants to collect DIDs added to the

Repository since the last harvest, which was conducted at T1.

These are the steps involved:

• The harvester issues a ListIdentifiers request against

the Repository Index, using the until parameter with a

value of T2. In response, the harvester receives a list of

repository-baseURLs and associated repository-

creationTimes.

[BaseURL(Repo-Index)?

 verb=ListIdentifiers&until=T2&

 metadataPrefix=INDEX]

• For each repository-baseURL that has a repository-

creationTime larger than T1, the harvester issues a

ListRecords request against the actual repository-

baseURL. Since OAI-PMH repositories that meet this

condition have become available for harvesting after the last

harvest - all DIDs need to be collected from it – the harvester

does not use the from argument in this request. It does,

however, use the until parameter with a value of T2.

[BaseURL(n)?

 verb=ListRecords&until=T2&metadataPrefix=DIDL]

• For each repository-baseURL that has a repository-

creationTime smaller than or equal to T1, the harvester issues

a ListRecords request against the actual repository-

baseURL. Since these repositories were already available for

harvesting at the time of the last harvest – only new or

updated DIDs need to be collected – the harvester issues a

ListRecords with a value of T1 for the from argument and

a value of T2 for the until argument.

[BaseURL(m)?

 verb=ListRecords&from=T1&until=T2&

 metadataPrefix=DIDL]

In order for these harvesting operations not to miss out on any

updates or additions made to this highly distributed and dynamic

environment, the following are crucial:

• Usage of the until parameter in the aforementioned

harvesting requests.

• Synchronization of the clocks on all machines operating the

autonomous OAI-PMH repositories and the Repository

Index. This can be achieved using the Network Time

Protocol [12].

• The content of the Repository Index must perfectly reflect

the collection of harvestable OAI-PMH repositories in the

environment. This tight synchronization of the Repository

Index and the collection of harvestable repositories can be

achieved in various ways. For example, the process of

populating the Repository Index can be integrated with that

part of the ingestion process where new OAI-PMH

repositories are created, i.e. the ingestion process can write to

the Repository Index. Alternatively, this can also be

achieved using the OAI-PMH. For example, in the file-

system based solution used by the LANL Repository, the

OAI-PMH could be used as follows. When a new OAI-PMH

repository is created, a special file containing the required

information about that repository is written to the file system

in which all OAI-PMH repositories reside. Using a tool

similar to the ‘OAI-PMH2 XML-file file-based OAI Data

Provider’ [13], this file system can be exposed as an OAI-

PMH repository that has file names as identifiers and

file-creation-dates – that become repository-creationTimes -

as datestamps. Whenever the Repository Index receives

the aforementioned ListIdentifiers request, it starts by

14
Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries (JCDL’04)
1-58113-832-6/04 $ 20.00 © 2004 ACM

Authorized licensed use limited to: Los Alamos National Laboratory Research Library. Downloaded on February 20, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

issuing a ListRecords request against this file-system-

based OAI-PMH repository to collect all BaseURL(n) that

are currently available. Next, the Repository Index is

updated according to the response. Finally, being certain

that its content matches the actual LANL Repository

situation, the Repository Index can respond to the

ListIdentifiers request it received from the downstream

harvester. This OAI-PMH-based approach has not yet been

tested in the LANL Repository effort.

5. A SPECIAL SERVICE PROVIDER: THE

IDENTIFIER RESOLVER
As harvesters working on behalf of Service Providers collect

DIDs from the LANL Repository, and as those Service Providers

build services with the collected information, identifiers contained

in the harvested DIDs become available in applications such as

search engines. As mentioned before, these identifiers can either

be DID-identifiers identifying the DIDs themselves, or Content-

identifiers identifying content contained in DIDs. Obviously it is

essential that, when such identifiers show up in downstream

applications, the corresponding content can be retrieved from the

Repository. For this purpose the Identifier Resolver is introduced

to the environment. The Identifier Resolver is a special-purpose

Service Provider that collects the information it requires from the

Repository through recurrent OAI-PMH harvesting. From the

harvested information, it only uses the DID-identifiers, the

Content-identifiers, and the baseURL of the OAI-PMH repository

in which these occur.

Table 1 illustrates the content of the Identifier Resolver. As can

be seen, Id-1 and Id-4 are DID-identifiers, and the corresponding

DIDs are located in the OAI-PMH repository with baseURL
BaseURL(3) and BaseURL(6), respectively. As described in

detail in [6] the Identifier Resolver also contains Content-

identifiers as well as the location of the different versions of the

corresponding content expressed as a combination of baseURL of

an OAI-PMH repository and the DID-identifier of the DID in

which the content resides. Since these Content-identifiers are not

important for the OAI-PMH functionality of the LANL

Repository described in this paper, they are not shown in Table 1.

Table1. Identifier Resolver Contents

DID-identifier OAI-PMH repository

Id-1 BaseURL(3)

Id-4 BaseURL(6)

The Identifier Resolver is accessible to applications in a number

of ways including the handle protocol [14], a SOAP-based

mechanism, and a C library. After consultation of the Identifier

Resolver, an application can use the OAI-PMH to retrieve the

DID with a specified DID-identfier. For example, if the object

with identifier Id-1 is requested, a look-up in the Identifier

Resolver will learn that it is located at BaseURL(3). From this

information, the application can conclude that the requested DID

can be obtained by issuing the OAI-PMH request:

[BaseURL(3)?

 verb=GetRecord&identifier=Id-1&

 metadataPrefix=DIDL]

6. EXPOSING MULTIPLE AUTONOMOUS

OAI-PMH REPOSITORIES AS A SINGLE

ONE: THE OAI-PMH FEDERATOR
A new component – the OAI-PMH Federator - is introduced in

the environment for the following reasons:

• As was described so far, harvesters – through the Repository

Index – need to be aware of the location of each autonomous

OAI-PMH repository in the environment in order to collect

DIDs. This is not optimal, as those harvesters are not really

interested in the autonomous repositories but rather in the

new DIDs irrespective of their location.

• The infrastructure presented so far is only capable of

disseminating DIDs as stored; the only supported

metadataPrefix is DIDL. One can imagine that – for

reasons of interoperability – the dissemination of stored

DIDs rendered into other complex object representations

such as METS [15], SCORM [16], IMS [17] would be

desirable. And it would, for example, clearly be attractive if,

in order to feed the Identifier Resolver, not the complete

DIDs would have to be disseminated, but only their bare

essentials as required by the Identifier Resolver. Rather than

supporting these kinds of transformations at the level of each

of the autonomous OAI-PMH repositories, a separate

component, shared by all repositories, is introduced in the

environment. This component, capable of disseminating and

transforming DIDs, or content contained in DIDs, is named a

Digital Item Processing engine and it operates according to

the MPEG-21 Digital Item Processing (DIP) specification

[18]. The functioning of the LANL DIP engine is described

in detail in [6], and will, in this paper, be illustrated by

means of a scenario.

The OAI-PMH Federator will relieve harvesters from the burden

of having to interact with all autonomous OAI-PMH repositories,

and having to understand about the Repository Index and the

Identifier Resolver, by exposing the whole environment as a

single OAI-PMH repository. As a matter of fact, the OAI-PMH

Federator becomes the single point of access to the LANL

Repository for harvesters, hiding the complexity of the LANL

Repository environment from them.

The OAI-PMH Federator accepts incoming OAI-PMH requests

from downstream harvesters, and contains logic to translate these

requests into appropriate requests to be issued against the

Repository Index, the Identifier Resolver and the autonomous

OAI-PMH repositories. Since many of the latter requests are

themselves OAI-PMH requests, the OAI-PMH Federator operates

its private OAI-PMH harvester. Logic built in to the OAI-PMH

Federator ensures that the responses received from the various

components of the LANL Repository it interacts with are

interpreted correctly, and, whenever appropriate, handed over to

downstream harvesters as valid OAI-PMH responses.

The OAI-PMH Federator is an OAI-PMH repository with the

following characteristics:

• It has a unique, persistent baseURL, the http address
BaseURL(Federator).

• The identifier used by the OAI-PMH is the DID-

identifier.

15
Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries (JCDL’04)
1-58113-832-6/04 $ 20.00 © 2004 ACM

Authorized licensed use limited to: Los Alamos National Laboratory Research Library. Downloaded on February 20, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

• The datestamp used by the OAI-PMH is the DID-

creationTime.

• DIDL is the natively supported metadata format, but, through

dynamic processing of DIDs by the DIP engine, potentially

many other metadata formats can be supported. The term

metadata format must be interpreted broadly, as the

metadataPrefix argument in harvesting requests issued

against the OAI-PMH Federator can be used to express

several types of transformations that can be applied to stored

DIDs:

• Transformations that map DIDL to another complex

object model such as METS. In this case, the value for

the metadataPrefix argument in harvesting requests

could be METS, and the METS XML Schema would

define the metadata format.

• Transformations that filter information from stored

DIDs, as is, for example, the case with harvesting of

only identifiers by the Identifier Resolver. In this case,

the metadata format will remain DIDL, but the nature of

the harvesting request will need to be further clarified

through the metadataPrefix , i.e. DIDL:identifiers.

• The supported granularity is seconds-level.

• In order to support harvesting from selected autonomous

OAI-PMH repositories, if this would be required, the OAI-

PMH Federator can expose an OAI-PMH set structure in

which the baseURL(n) of each autonomous repository is

presented as a setSpec.

The interaction of a downstream harvester with the LANL

Repository through the OAI-PMH Federator is illustrated by

detailing the manner in which the response to the following

harvesting requests is provided: ListMetadataFormats,

ListSets, GetRecord, ListIdentifiers.

6.1 ListMetadataFormats
[BaseURL(Federator)?

 verb=ListMetadataFormats

and

 BaseURL(Federator)?

 verb=ListMetadataFormats&identifier=Id-1

where Id-1 is a DID-identifier]

Because both types of transformation described earlier can be

applied to all DIDs, and because only DIDs are stored in the

LANL Repository, support of a given metadata format is a

Repository-wide property, that is not dependent on a specific DID

or DID-identifier. Therefore, a response to the

ListMetadataFormats verb – with or without identifier
argument - is straightforward for the OAI-PMH Federator to

create. The DIP engine holds a table – the DIP Table – that lists

all methods that can be applied to objects stored in the LANL

Repository depending on their nature, i.e. whether they are DIDs,

whether they are assets, what the media type of an asset is, etc.

The DIP Table has a section with multiple OAI-PMH-specific

entries, each of which lists a metadataPrefix value, the

associated XML Namespace, and a pointer to the method that can

be used to transform a stored DID to the format identified by the

metadataPrefix value. As a matter of fact, this section of the

DIP Table stores all relevant information on all transformations

that can be applied to DIDs, and this information directly

corresponds to the metadata formats that are supported by the

OAI-PMH Federator.

6.2 ListSets
[BaseURL(Federator)?verb=ListSets]

The ListSets response detailing a baseURL-based set structure

that reflects the baseURLs of autonomous OAI-PMH repositories,

can easily be generated by the OAI-PMH Federator by issuing a

ListIdentifiers request against the Repository Index

[BaseURL(Repo-Index)?

 verb=ListIdentifiers&metadataPrefix=INDEX]

 and by transforming the response to that request into a ListSets
response to the downstream harvester.

6.3 GetRecord
[BaseURL(Federator)?

 verb=GetRecord&identifier=Id-1&

 metadataPrefix=DIDL

and

 BaseURL(Federator)?

 verb=GetRecord&identifier=Id-1&

 metadataPrefix=abc

in which Id-1 is a DID-identifier]

These are the steps involved in generating the appropriate

GetRecord response:

• Via the DIP Table, the OAI-PMH Federator can determine

whether the requested metadataPrefix - DIDL or abc – is

supported. If yes, the process can continue, if not, a

cannotDisseminateFormat error response can be

generated.

• Through interaction with the Identifier Resolver, the OAI-

PMH Federator finds out about the location of the DID with

DID-identifier Id-1, namely BaseURL(3). If no entry for

Id-1 would exist in the Identifier Resolver, the OAI-PMH

Federator can generate an idDoesNotExist error response.

• The OAI-PMH Federator obtains the stored DID by issuing a

GetRecord request

[BaseURL(3)?

 verb=GetRecord&identifier=Id-1&

 metadataPrefix=DIDL].

• If the metadataPrefix requested in the original

GetRecord request was DIDL, no special actions need

to be undertaken.

• If the metadataPrefix requested in the original

GetRecord request was abc, the OAI-PMH Federator

calls the DIP engine to have it apply the transform that –

in the DIP Table – corresponds to abc.

• The OAI-PMH Federator embeds the record resulting from

the previous step in a correct OAI-PMH response. If a

baseURL-based set structure is exposed by the OAI-PMH

Federator, this includes inserting set membership

information in the headers of the responses .

16
Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries (JCDL’04)
1-58113-832-6/04 $ 20.00 © 2004 ACM

Authorized licensed use limited to: Los Alamos National Laboratory Research Library. Downloaded on February 20, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

6.4 ListIdentifiers
[BaseURL(Federator)?

verb=ListIdentifiers& from=T1&until=T2&

metadataPrefix=DIDL

 and

BaseURL(Federator)?

verb=ListIdentifiers&from=T1&until=T2&

metadataPrefix=abc

in which T1 and T2 are as explained in Section 4]

These are the steps involved in generating the appropriate

ListIdentifiers response:

• Via the DIP Table, the OAI-PMH Federator can determine

whether the requested metadataPrefix - DIDL or abc – is

supported. If yes, the process can continue, if not, a

cannotDisseminateFormat error response can be

generated.

• The OAI-PMH Federator conducts the different steps

detailed in Section 4. Since support of a given metadata

format is a Repository-wide attribute, the steps are identical

for all supported metadataPrefix values:

• Identification of the autonomous OAI-PMH repositories

that meet the harvesting criteria by interaction with the

Repository Index

 [BaseURL(Repo-Index)?

 verb=ListIdentifiers&until=T2&

 metadataPrefix=INDEX]

• For each OAI-PMH repository identified through

interaction with the Repository Index one of the

following actions is taken: (1) If the OAI-PMH

repository was created after the last harvest, collect all

DID-identifiers

[BaseURL(n)?

verb=ListIdentifiers&until=T2&

metadataPrefix=DIDL];

(2) If the OAI-PMH repository already existed at the

last harvest, collect the DID-identifiers of added or

updated DIDs

 [BaseURL(n)?

verb=ListIdentifiers&from=T1&until=T2&

metadataPrefix=DIDL]

• The OAI-PMH Federator returns the responses to harvesting

requests issued against the individual OAI-PMH repositories

as valid OAI-PMH responses to the downstream harvester.

As was the case with the GetRecord response, this might

include editing the headers of the responses to insert set-

membership information. The following are important with

respect to this step in the process:

• It is – in theory – possible that the Repository Index

returns a noRecordsMatch error response. The OAI-

PMH Federator must return such a response to the

downstream harvester.

• It is possible that autonomous OAI-PMH repositories

respond with a noRecordsMatch error response. The

OAI-PMH Federator must not pass on such responses to

the downstream harvester but rather interpret them as a

command to start harvesting from the next autonomous

OAI-PMH repository that was returned by the

Repository Index. Only if no meaningful responses

have been received from any of the individual OAI-

PMH repositories must the OAI-PMH Federator itself

return a noRecordsMatch error response.

• Care must be taken to appropriately handle

resumptionTokens delivered by an individual OAI-

PMH repository. As a matter of fact, the OAI-PMH

Federator will need to adapt such resumptionToken
by adding the following information to it (1) the

baseURL of the autonomous OAI-PMH repository from

which the resumptionToken was received (2) the

requested metadataPrefix. Also, the OAI-PMH

Federator may need to create resumptionTokens of its

own, to make the transition between harvesting from

one autonomous OAI-PMH repository to the next

easier.

• If one of the autonomous OAI-PMH repositories to be

harvested from returns a badResumptionToken error

message, the OAI-PMH Federator must pass this on to

the downstream harvester. If one of the OAI-PMH

repositories fails to respond, the OAI-PMH Federator

must generate an appropriate HTTP error indicating this

‘internal error’. The HTTP status-code 503 ‘service

unavailable’ is suitable for that purpose. In both cases,

the responses indicate to the downstream harvester that

its ongoing harvest can not be completed successfully,

and that the intended harvest should be restarted at

some later time.

A ListIdentifiers request with a set argument that specifies

the baseURL of an autonomous OAI-PMH repository can be

obtained by first interacting with the Repository Index – using a

GetRecord request - to determine whether the specified

repository exists. Then, the harvesting request targeted at the

OAI-PMH Federator can be translated to a request targeted at an

individual OAI-PMH repository by using the value of the set
argument of the initial request as the baseURL for the translated

request. The exact harvesting request to be issued will depend on

the relationship between the time of the last harvest and the

creation time of the OAI-PMH repository to be harvested from, as

was explained earlier in this Section and in Section 4. For

example, if repository-creationTime(BaseURL(6)) > T1 then the

OAI-PMH Federator can translate the incoming request

[BaseURL(Federator)?

 verb=ListIdentifiers&from=T1&until=T2&

 metadataPrefix=DIDL&set=BaseURL(6)]

to

[BaseURL(6)?

 verb=ListIdentifiers&until=T2&

 metadataPrefix=DIDL].

 In this case, also set information needs to be added to a

resumptionToken when it is passed on to a downstream

harvester.

17
Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries (JCDL’04)
1-58113-832-6/04 $ 20.00 © 2004 ACM

Authorized licensed use limited to: Los Alamos National Laboratory Research Library. Downloaded on February 20, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

Through a process similar to the above, the response to a

ListIdentifiers request without a from and/or until
argument can be generated.

The process of responding to a ListRecords request is similar to

that of responding to a ListIdentifiers request. However, as

was the case with the GetRecord request, when a metadata

format other than DIDL is requested, the DIP engine will be

called for each DID received in the response from autonomous

OAI-PMH repositories. The ListRecords response delivered by

the OAI-PMH Federator will contain the requested transformation

of the stored DIDs.

7. DISCUSSION
Initial versions of each of the components of the described

architecture have been implemented, and a series of small-scale

experiments in which DIDs – or transformations thereof - were

harvested from the environment through the OAI-PMH Federator

were completed successfully. At the time of writing, a larger scale

test in which millions of DIDs will be ingested into multiple

autonomous OAI-PMH repositories is being prepared, and a

transition of the described architecture into production is expected

to happen in the next few months. By making the LANL

Repository harvestable through the OAI-PMH Federator, each

downstream application can use off-the-shelf OAI-PMH

harvesting software to collect added or updated materials. The

OAI-PMH Federator itself can be built around off-the-shelf OAI-

PMH harvesting software; the OCLC OAIHarvester framework

[19] has been selected for that purpose. Also, off-the-shelf OAI-

PMH repository software can be used to deploy both the

Repository Index, and the multitude of autonomous OAI-PMH

repositories. Generally speaking, the multi-faceted use of the

OAI-PMH in the LANL Repository ensures that only a very

limited set of lightweight tools, most of which are available off-

the-shelf, are required to interact with the environment.

To reduce the complexity of the paper, the use of OAI-PMH sets
by the autonomous OAI-PMH repositories or the Repository

Index, and the impact thereof on the OAI-PMH Federator, has not

been discussed. However, their use is currently being actively

researched. Hence the question is not whether sets can be

supported at all, because the answer to that question is

affirmative. The question is rather for which purpose the set
structure will be used, and how exactly it will be implemented.

Since sets are a technique provided by the OAI-PMH to allow

for selective harvesting, it can be used to achieve various

optimizations in the proposed solution aimed at guaranteeing its

scalability. As was mentioned, XMLtapes are static and hence

never need to be harvested for updates after an initial harvest

gathered all contained DIDs. As such, many polls of autonomous

OAI-PMH repositories by the OAI-PMH Federator could be

avoided if the Repository Index would maintain a set structure

that reflects the static or dynamic nature of those repositories, and

if the OAI-PMH Federator would make use of this set-

information in the logic that underlies its interaction with the

environment. Other optimizations can be imagined that would

allow downstream harvesters to only collect the type of DIDs they

are really interested in, rather than to have them collect all DIDs

and have them dispose of the ones that are not relevant to their

task. For example, a full-text indexing engine is really only

interested in DIDs containing textual materials, while a video

indexing engine only wants those that contain moving images.

This would suggest an optimization that could be achieved by

implementing a set structure supported throughout the LANL

Repository reflecting media types. This would also be attractive

for the purpose of general repository management and digital

preservation. Another potential set structure could be collection-

oriented, and would allow a downstream harvester to, for

example, only collect DIDs that contain Inspec data. Generally

speaking, it seems that the nature of the set structure to be

supported is closely related with the specific requirements of the

anticipated applications on whose behalf the downstream

harvesters operate. It also seems that sets supported by all

autonomous OAI-PMH repositories in the environment are of

particular interest for the purpose of optimizing harvests.

The simplicity of the tools used in the architecture, and their off-

the-shelf availability may make the proposed solution attractive

for institutions beyond LANL that share the need to store

collections of complex digital objects. As was described, care

must be taken of the appropriate time-synchronization of the

autonomous OAI-PMH repositories, the Repository Index and the

OAI-PMH Gateway in order to ensure that downstream harvesters

do not miss out on updates in the environment. Also, a high

uptime of the OAI-PMH repositories must be guaranteed in order

to avoid unsuccessful harvests. These boundary conditions of the

solution can straightforwardly be met in the controlled

environment of the repository of a single institution. Of special

interest to certain institutions may be the XMLtape, which is

particularly useful for archiving a collection of static objects in a

self-contained manner, and to make those objects accessible using

tools supported on most operating systems, and a protocol – the

OAI-PMH – that is straightforward to implement. As this yields

hassle-free operation and high uptimes – properties appreciated by

many - LANL has decided to make its XMLtape software

available to the public [20].

The protocol-based nature of the proposed solution, and its

modularity, may also make it attractive for the federation of

groups of OAI-PMH repositories distributed over the Web. For

example, such a federation could consist of Institutional

Repositories that operate various brands of Institutional

Repository software, use different document models, and yet have

the need to recurrently interchange contained objects. Also,

another federation can be imagined that groups trusted digital

repositories [21] that regularly need to interchange objects in

order to guarantee redundancy. Generally speaking, a federation

of community-based OAI-PMH repositories containing complex

digital objects can be imagined for which a Repository Index and

an OAI-PMH Federator are deployed. Records contained in those

repositories could be homogeneous across the federation with

each repository supporting, for example, DIDL. But the

federation could also be heterogeneous, with one repository

supporting DIDL, another METS, and yet another IMS. The

population of a Repository Index in this scenario would be

different than the one described in the context of the LANL

Repository but its OAI-PMH functionality would remain

identical. Again, an OAI-PMH Federator hides the complexity of

the multitude of repositories to harvesters, and through a

component similar to the DIP engine, it could support crosswalks

between the multiple complex object format(s) used by the

federation. Assuming that a crosswalk between each of those

formats is available, then the combination of a

ListMetadataFormats request against a repository in the

18
Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries (JCDL’04)
1-58113-832-6/04 $ 20.00 © 2004 ACM

Authorized licensed use limited to: Los Alamos National Laboratory Research Library. Downloaded on February 20, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

federation and a lookup of the resulting metadataPrefix in the

equivalent of the DIP Table suffice for the OAI-PMH Federator to

be able to respond to a harvest requesting objects in whichever

format supported in the federation. As a result, the OAI-PMH

Federator would operate as a ‘complex object format’ switch for

the federation. In such a distributed Web-based federation, the

the synchronicity requirement can be met using available network

tools, as was described for the LANL Repository. This would

obviously require an appropriate level of organization of the

federation. The same is true for guaranteeing a high uptime of the

OAI-PMH repositories in the federation.

The question of more general applicability of the proposed

architecture becomes harder to answer when loosely-structured or

unmanaged federations are considered. Consider, for example,

the collection of all public OAI-PMH repositories as a federation.

This is not a federation of OAI-PMH repositories that expose

complex objects, but rather one in which more regular metadata

formats – such as DC and MARCXML – are supported. This

does not really influence the nature of the architecture. In this

federation, an interesting parallel can be drawn between the

Repository Index and the registries operated by the OAI [22] and

UUIC [23], as the latter list the baseURLs of all repositories in

this loose federation. Also, the ERRoLs service [24] capable of

resolving oai-identifiers [25] in a sense resembles the Identifier

Resolver, although it uses business rules rather than data collected

from individual repositories to resolve identifiers. This suggests

that an OAI-PMH Federator might potentially be added to this

federation as a single point of access to all public OAI-PMH

repositories. However, since neither the synchronicity

requirement nor the high uptime of repositories seems

straightforward to implement in such a loosely-structured

federation, further research would be required to determine the

usability of the proposed solution in that realm. Clearly, such a

loosely-structured federation would require a flexible variation of

the proposed OAI-PMH Federator that relies on a schedule-based

scheme to achieve a form of pseudo-synchronicity. Meanwhile,

the aggregating approach, as proposed by Celestial [26], seems

more appropriate for such loosely-structured federations.

Celestial, an OAI-PMH aggregator, actually collects the records

contained in all repositories, stores them in its own environment,

and re-exposes them at a single baseURL. In contrast, the OAI-

PMH Federator merely acts as a gateway to the repositories,

collecting records from those repositories and immediately

passing them on to downstream harvesters, as such avoiding the

central storage space required by Celestial.

To be complete, it should be mentioned that, due to their lack of

support of DC, neither of the OAI-PMH repositories used in the

proposed architecture are compliant with the current version of

the OAI-PMH that mandates support of DC. As the described use

of the OAI-PMH seems appropriate, suitable and attractive for the

described problem domain, this seems to further fuel the

discussion [27] as to whether DC should indeed remain

mandatory.

8. CONCLUSION
This paper has focused on the multi-faceted use of the OAI-PMH

in the LANL repository architecture. Official and/or de-facto

standards are used throughout this architecture to store and make

accessible a vast collection of scholarly asset in a consistent and

sustainable way. These include MPEG-21 DIDL, MPEG-21 DIP,

NISO OpenURL, and the OAI-PMH. Other papers by the DL

Research and Prototyping Team are available that provide details

on the use of MPEG-21 DIDL as the format to represent complex

digital objects, and on the application of NISO OpenURL and

MPEG-21 DIP to request disseminations of selected objects from

the LANL Repository.

In essence, this paper has described an approach to uniformly

make a vast and, ever growing data collection available to various

downstream applications. Each of these applications focuses on

building accurate services on top of the data collection and

therefore must be able to remain permanently in sync with it. In

the proposed approach, this rather complex problem is

modularized through the introduction of several interacting

components - the individual OAI-PMH repositories, the

Repository Index, the Identifier Resolver and the OAI-PMH

Federator - each addressing a simpler sub-problem. For most of

the interactions between the components, the lightweight OAI-

PMH protocol plays a prominent role. This makes the proposed

approach attractive, as the OAI-PMH is a lightweight protocol for

which software tools are readily available. It may also make the

approach attractive beyond the LANL Research Library. A more

general applicability seems to be feasible, indeed, for OAI-PMH

repositories under control of a single institution, or for a well-

managed federation of OAI-PMH repositories. Further research

would be required to determine whether and how the solution

could be adapted to enable its deployment in loosely-structured

federations.

9. ACKNOWLEDGMENTS
The authors would like to thank their colleagues Luda Balakireva,

Jeroen Bekaert and Thorsten Schwander from the LANL DL

Research and Prototyping team for their contributions to the

reported work, and the LANL library director, Rick Luce, for his

ongoing support.

10. REFERENCES
[1] J. Bollen, R. Luce. Evaluation of Digital Library Impact and

User Communities by Analysis of Usage Patterns. D-Lib

Magazine June 2002 Volume 8 Number 6. http://dx.doi.org/

10.1045/june2002-bollen

[2] H. Van de Sompel, J. Young, and T. Hickey. Using the OAI-

PMH ... Differently. D-Lib Magazine, July/August 2003,

Volume 9 Number 7/8. http://dx.doi.org/10.1045/july2003-

young

[3] M. Smith et al. DSpace An Open Source Dynamic Digital

Repository. D-Lib Magazine.January 2003, Volume 9

Number 1. http://dx.doi.org/10.1045/january2003-smith

[4] T. Staples et al.The Fedora Project An Open-source Digital

Object Repository Management System. D-Lib Magazine

April 2003 Volume 9 Number 4.

http://dx.doi.org/10.1045/april2003-staples

[5] J. Bekaert, P. Hochstenbach, and H. Van de Sompel. Using

MPEG-21 DIDL to Represent Complex Digital Objects in

the Los Alamos National Laboratory Digital Library. D-Lib

Magazine, November 2003, Volume 9 Number 11.

http://dx.doi.org/10.1045/november2003-bekaert

[6] J. Bekaert, L. Balakireva , P. Hochstenbach, and Herbert Van

de Sompel. Using MPEG-21 DIP and NISO OpenURL for

19
Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries (JCDL’04)
1-58113-832-6/04 $ 20.00 © 2004 ACM

Authorized licensed use limited to: Los Alamos National Laboratory Research Library. Downloaded on February 20, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

the dynamic dissemination of Complex Digital Objects in the

Los Alamos National Laboratory Digital Library. D-Lib

Magazine, February 2004, Volume 10 Number 2.

http://dx.doi.org/10.1045/february2004-bekaert

[7] C. Lagoze, H. Van de Sompel, M. Nelson, and S. Warner.

The Open Archives Initiative Protocol for Metadata

Harvesting - Version 2.0, 2002

http://www.openarchives.org/OAI_protocol/openarchivespro

tocol.html

[8] NISO committee AX. ANSI/NISO Z39.88-2004. The

OpenURL Framework for Context-Sensitive Services.

November 2003

http://library.caltech.edu/openurl/StandardDocuments/Part1-

Ballot-20031111.pdf

[9] MPEG-21, Information Technology, Multimedia Framework,

Part 2: Digital Item Declaration, ISO/IEC 21000-2:2003,

March 2003.

[10] ISO 8601:2000, Data elements and interchange formats --

Information interchange -- Representation of dates and times,

Technical committee TC 154, ICS 01.140.30,stage 60.60,

2000-12-21

[11] S. Brin and L. Page. The anatomy of a large-scale

hypertextual Web search engine. In Proceedings of the 7th

International World Wide Web Conference, Brisbane,

Australia, 1998.

http://citeseer.nj.nec.com/brin98anatomy.html

[12] D. Mills. Network Time Protocol RFC 2030.

http://www.eecis.udel.edu/~mills/database/rfc/rfc2030.txt

[13] Hussein Suleman.OAI-PMH2 XMLFile File-based Data

Provider. December 2002,

http://www.dlib.vt.edu/projects/OAI/software/xmlfile/xmlfile

.html

[14] S. Sun, et al. Handle System Overview. Internet Engineering

Task Force (IETF) Request for Comments (RFC), RFC 3650,

November 2003. http://hdl.handle.net/4263537/4069

[15] Metadata Encoding and Transmission Standard (METS),

http://www.loc.gov/standards/mets/

[16] The Sharable Content Object Reference Model (SCORM).

http://www.adlnet.org/index.cfm?fuseaction=scormabt

[17] IMS Global Learning Consortium, “IMS Content Packaging

XML Binding - version 1.1.2 - Final specification,” 2001.

[18] MPEG-21, Information Technology, Multimedia Framework,

Part 10: MPEG-21 Digital Item Processing, ISO/IEC

JTC1/SC29/WG11 N5855, Trondheim, July 2003.

[19] OAIHarvester.

http://www.oclc.org/research/software/oai/harvester.htm

[20] Yet Another Repository (YAR). http://yar.sourceforge.net

[21] RLG-OCLC. Trusted Digital Repositories: Attributes and

Responsibilities.

http://www.rlg.org/longterm/repositories.pdf

[22] Open Archives Registry,

http://www.openarchives.org/Register/BrowseSites.pl

[23] Experimental OAI Registry at The University of Illinois at

Urbana Champaign http://gita.grainger.uiuc.edu/registry

[24] ERRoLs. http://www.oclc.org/research/projects/oairesolver/

[25] Van de Sompel, H., Lagoze, C., Nelson, M., and Warner, S.

Implementation Guidelines for the Open Archives Initiative

for Metadata Harvesting: Specification and XML Schema for

the OAI Identifier Format, 2002

http://www.openarchives.org/OAI/2.0/guidelines-oai-

identifier.htm

[26] Tim Brody et al. Digitometric Services for Open Archives

Environments. Proceedings of European Conference on

Digital Libraries 2003, pages pp. 207-220, Trondheim,

Norway.

[27] OAI-implementers mailing list, thread “Reconsidering

mandatory DC in OAI-PMH”.

http://www.openarchives.org/pipermail/oai-

implementers/2003-August/000945.html

20
Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries (JCDL’04)
1-58113-832-6/04 $ 20.00 © 2004 ACM

Authorized licensed use limited to: Los Alamos National Laboratory Research Library. Downloaded on February 20, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

